Абсорционные холодильные машины
+7 (812) 313-27-07
+7 (495) 505-63-32
ОСТАВИТЬ ЗАЯВКУ

Абсорционные холодильные машины

    Одна из возможных областей применения абсорбционных холодильных машин – здания с высокими пиковыми нагрузками на систему электроснабжения. Затраты электрической энергии на кондиционирование воздуха составляют существенную часть общей электрической нагрузки здания. При ограничении максимальной электрической мощности использование абсорбционных холодильных машин является хорошим способом минимизации или «сглаживания» пиковой электрической нагрузки. Также используются и гибридные системы, в которых базовая холодильная нагрузка обеспечивается электрическими чиллерами, а пиковая – абсорбционными холодильными машинами, работающими на природном газе.
    Абсорбционные холодильные машины могут использоваться как в составе системы холодоснабжения, так и как часть интегрированной системы тепло- и холодоснабжения. Дополнительная экономия энергии может быть достигнута за счет утилизации тепловой энергии.
   Самые простые холодильные машины этого типа используются в некоторых моделях бытовых холодильников, работающих на природном газе без каких-либо затрат электрической энергии.

Классификация абсорбционных холодильных машин

    Абсорбционная холодильная машина – пароконденсационная холодильная установка. В этой установке хладагент испаряется за счет его поглощения (абсорбции) абсорбентом. Процесс испарения происходит с поглощением теплоты. Затем пары хладагента за счет нагрева (внешним источником тепловой энергии) выделяются из абсорбента и поступают в конденсатор, где за счет повышенного давления конденсируются.
    АБХМ бывают прямого и непрямого нагрева, одноступенчатые, двухступенчатые и трехступенчатые. В машинах прямого нагрева источником тепла может быть газ или другое топливо, сжигаемое непосредственно в установке. В машинах непрямого нагрева используется пар или другой теплоноситель, посредством которого теплота переносится от источника. В качестве источника может выступать бойлер, или, например, использоваться тепловая энергия, являющаяся побочным продуктом технологического процесса. Кроме того, существуют комбинированные (гибридные) системы, в состав которых входят АБХМ и когенераторные установки на природном газе, обеспечивающие выработку тепловой и электрической энергии; использование гибридных установок позволяет оптимизировать нагрузку на систему энергоснабжения и обеспечить экономию энергетических ресурсов.
    Существуют бромистолитиевые или аммиачные АБХМ. В бромистолитиевых АБХМ в качестве хладагента используется вода, а в качестве абсорбента – бромид лития LiBr. В аммиачных АБХМ в качестве хладагента используется аммиак NH3, а в качестве абсорбента – вода. В настоящее время наибольшее распространение получили бромистолитиевые АБХМ.
Компонент системы, поглощаемый абсорбентом в процессе абсорбции, носит название абсорбат. Соответственно, абсорбент – жидкая фаза, поглощающая абсорбат в процессе абсорбции.

Одноступенчатые абсорбционные холодильные машины
    В одноступенчатых АБХМ («single effect», в литературе иногда используется термин «одноконтурные») хладагент последовательно перемещается через четыре основных компонента машины – испаритель, абсорбер, десорбер и конденсатор. Холодильный цикл одноступенчатой АБХМ представлен на рис. 1. Он очень похож на холодильный цикл парокомпрессионной холодильной машины. Схема одноступенчатой АБХМ представлена на (рис. 2). Хладагент испаряется при понижении давления в испарителе 1. Этот процесс идет с поглощением теплоты. В отличие от парокомпрессионной холодильной машины, процесс понижения давления в испарителе происходит не за счет работы компрессора, а за счет объемного поглощения (абсорбции) хладагента жидким абсорбентом в абсорбере 2. Затем абсорбент с поглощенным им хлад-агентом (бинарный раствор) поступает в десорбер 3. В десорбере бинарный раствор нагревается за счет горения газа, паром и т. д., в результате чего происходит выделение хладагента из абсорбента. Обедненный абсорбент из десорбера возвращается в абсорбер. Хладагент поступает под большим давлением в конденсатор 4, где переходит в жидкую фазу с выделением теплоты, а затем через расширительный клапан 5 поступает в испаритель, после чего начинается новый цикл.

Холодильный цикл одноступенчатой абсорбционной холодильной машины

    Изменение концентрации хладагента в абсорбере и десорбере сопровождается изменением температуры насыщения. Для снижения потерь энергии при циркуляции абсорбента между аб-сорбером и десорбером устанавливается рекуперативный теплообменник.
    Идеальная одноступенчатая АБХМ могла бы обеспечить холодильный эффект, равный количеству тепловой энергии, подведенной к генератору, однако из-за термодинамических потерь в реальных установках холодильный эффект всегда будет ниже, чем затраты тепловой энергии.

Схема одноступенчатой абсорбционной холодильной машины

    Коэффициент полезного действия одноступенчатых АБХМ относительно низок, что несколько ограничивает их область применения.
    В настоящее время одноступенчатые АБХМ часто устанавливаются в тех зданиях, где имеются легкодоступные источники сбросного тепла. Машины этого типа используются в составе систем кондиционирования воздуха и в качестве источника охлажденной воды для различных технологических процессов. Установочная мощность одноступенчатых АБХМ составляет, как правило, от 25 кВт до 5 МВт.

Двухступенчатые абсорбционные холодильные машины
    Более высокой эффективностью по сравнению с одноступенчатыми отличаются двухступенчатые АБХМ. В этих установках, в отличие от одноступенчатых холодильных машин, используется два конденсатора или два абсорбера, с тем чтобы обеспечить более эффективное выделение хладагента из абсорбента при меньших затратах тепловой энергии.
    Двухступенчатые АБХМ могут быть разных конфигураций. Две основные конфигурации – системы с двойным конденсатором и системы с двойным абсорбером. Принцип их действия основан на том, что охлаждающая способность холодильной машины зависит, прежде всего, от количества хладагента, который может быть переведен в газовую фазу в испарителе, и, используя тепловую энергию, отводимую от конденсатора или образующуюся на стадии абсорбции, можно повысить количество хладагента, десорбируемого из абсорбента.
    Схема и холодильный цикл двухступенчатой АБХМ с двойным конденсатором приведены на (рис. 3).

Схема и холодильный цикл двухступенчатой абсорбционной холодильной машины с двойным конденсатором
Рисунок3 - Схема и холодильный цикл двухступенчатой абсорбционной холодильной машины с двойным конденсатором

    В первом десорбере (Десорбер 1) за счет нагрева от внешнего источника образуются пары хладагента при частичной десорбции хладагента из абсорбента, которые поступают в первый конденсатор (Конденсатор 1). Обедненная смесь абсорбента и хладагента поступает во второй десорбер (Десорбер 2). Во втором десорбере происходит окончательная десорбция хладагента за счет тепловой энергии, образующейся при конденсации хладагента в первом конденсаторе (Конденсатор 1). Затем хладагент и из первого конденсатора (Конденсатор 1) и из второго десорбера (Десорбер 2) поступает во второй конденсатор (Конденсатор 2), в котором и происходит окончательный процесс конденсации.
    Схема и холодильный цикл двухступенчатой АБХМ с двойным абсорбером приведены на (рис. 4.)

Схема и холодильный цикл двухступенчатой абсорбционной холодильной машины с двойным абсорбером

    В этом случае генератор разделен на низко- и высокотемпературную секции. Пары хладагента из испарителя поступают во второй абсорбер (Абсорбер 2), где частично абсорбируются. Оставшиеся пары хладагента поступают в первый абсорбер (Абсорбер 1). Скрытая (латентная) теплота паров хладагента в первом абсорбере используется для десорбции паров хладагента из бинарного раствора во втором (низкотемпературном) десорбере (Десорбер 2), как показано на (рис. 4).
    В свою очередь, для десорбции паров хладагента из бинарного раствора в высокотемпературном десорбере (Десорбер 1) используется тепловая энергия от внешнего источника. Пары хладагента и из второго (Десорбер 2), и из первого (Десорбер 1) десорбера поступают в единственный конденсатор (Конденсатор).
    В качестве источника тепловой энергии в машинах этого типа может использоваться перегретый пар высокого давления либо различные виды горючего топлива, чаще всего природный газ. Двухступенчатые АБХМ целесообразно использовать в тех случаях, когда стоимость электрической энергии высока относительно стоимости природного газа (либо другого топлива). Кроме того, двухступенчатые АБХМ могут применяться в случаях, когда есть источник перегретого пара высокого давления. Они более эффективны, но при этом отличаются более высокой стоимостью по сравнению с одноступенчатыми.     Более высокая стоимость двухступенчатых АБХМ обуславливается в том числе применением более дорогостоящих материалов высокой коррозионной стойкости (из-за более высоких рабочих температур), с большей площадью поверхности теплообменника, более сложными системами управления.

Трехступенчатые абсорбционные холодильные машины
    Трехступенчатые АБХМ являются дальнейшим логическим развитием двухступенчатых АБХМ. В настоящее время эта технология находится на начальном этапе своего развития.
    Трехступенчатая АБХМ, как и двухступенчатая, может быть реализована различными способами, число возможных конфигураций здесь еще больше по сравнению с двухступенчатыми АБХМ. Простейшая трехступенчатая АБХМ представляет собой комбинацию двух отдельных одноступенчатых АБХМ, где тепловая энергия от одного контура используется в другом контуре. На рис. 5 приведены схема и холодильный цикл трехступенчатой АБХМ. Высокотемпературный цикл обеспечивает холодильный эффект за счет внешнего источника тепловой энергии, но в то же время сам является источником тепловой энергии для низкотемпературного цикла.
    Системы с трехступенчатыми АБХМ столь же эффективны, как и традиционные системы с электрическими чиллерами. Однако при этом стоимость таких АБХМ будет выше, поэтому экономическая целесообразность их применения должна определяться индивидуально в зависимости от особенностей конкретного объекта.

Схема и холодильный цикл трехступенчатой абсорбционной холодильной машины

Рисунок 5.
Схема и холодильный цикл трехступенчатой абсорбционной холодильной машины


Гибридные системы
    Гибридные системы обладают достоинствами как абсорбционных, так и компрессорных холодильных машин. В типичной гибридной установке холодильная машина с электрическим приводом используется в часы внепиковых нагрузок на систему электроснабжения. Зачастую в это время и тарифы на электрическую энергию могут быть ниже, что приводит к уменьшению эксплуатационных затрат. В часы максимальной пиковой нагрузки на систему электроснабжения используется главным образом АБХМ, а компрессорная холодильная машина включается по мере необходимости, обеспечивая покрытие лишь части нагрузки на систему холодоснабжения. Специфика применения гибридных систем в конкретном проекте определяется характером нагрузки на систему холодоснабжения, особенностями местных тарифов на электрическую энергию и газ (либо иное топливо). Так, целесообразно использование гибридных систем на крупных промышленных предприятиях, где обслуживание инженерного оборудования осуществляется высококвалифицированным обслуживающим персоналом, способным оптимизировать режимы работы оборудования для получения максимального экономического эффекта.

Эффективность абсорбционных холодильных машин

    Эффективность абсорбционных холодильных машин характеризуется холодильным коэффициентом (coefficient of performance, COP), определяемым как отношение холодопроизводительности установки к затратам тепловой энергии. Одноступенчатые АБХМ характеризуются величинами холодильного коэффициента, равными 0,6–0,8 (при максимально возможном 1,0). Поскольку холодильный коэффициент установок этого типа всегда меньше единицы, одноступенчатые АБХМ целесообразно использовать в случаях, когда есть возможность утилизации тепловой энергии, например, сбросная тепловая энергия от электростанций, котлов и т. п.
    Двухступенчатые АБХМ характеризуются величинами холодильного коэффициента, равными примерно 1,0 при максимально возможном 2,0. Еще не доступные для коммерческого использования прототипы трехступенчатых АБХМ характеризуются величинами холодильного коэффициента от 1,4 до 1, 6.
Эффективность традиционных компрессорных холодильных машин также характеризуется холодильным коэффициентом, однако, поскольку в них используется электрическая энергия от источника централизованного электроснабжения, необходимо учитывать эффективность выработки электрической энергии и потери ее при транспортировке. По этим причинам прямое сравнение эффективности компрессорных холодильных машин с электроприводом и эффективности газовых АБХМ некорректно. Можно сравнить холодильный коэффициент с учетом потерь при выработке энергии и ее транспортировке.
    Эффективность реальных холодильных машин значительно ниже эффективности идеальной холодильной машины, во многом за счет сложных необратимых процессов, проходящих в рабочих жидкостях. Для хладагента АБХМ, помимо обычных, предъявляется ряд специфических требований, обусловленных особенностями реализации абсорбционного холодильного цикла. Среди этих требований:

• Высокая растворимость в абсорбенте при заданной рабочей температуре абсорбера.
• Низкая растворимость в абсорбенте при заданной рабочей температуре десорбера.
• Неспособность к химической реакции с абсорбентом во всем диапазоне рабочих температур.

Целесообразная область применения

    Основное преимущество работающих на природном газе АБХМ – сокращение эксплуатационных расходов за счет сокращения потребления относительно дорогостоящей электрической энергии и выравнивание пиковых нагрузок на систему электроснабжения. Кроме того, использование газовых систем охлаждения позволяет повысить надежность систем климатизации, поскольку в этом случае работоспособность системы холодоснабжения меньше зависит от надежности одного-единственного источника электроснабжения, особенно в случае использования гибридных систем.     Целесообразно также применение АБХМ в качестве резервного источника холодоснабжения.
Системы охлаждения, работающие на природном газе, в конечном итоге обеспечивают более полное использование топливных ресурсов, чем сопоставимые системы охлаждения, потребляющие электрическую энергию. Типичный процесс производства электрической энергии предполагает при выработке и транспортировке потери примерно 65–75 % топливных ресурсов. В то же время в газоиспользующих системах теряется всего 5–10 % топлива. Утилизация сбросной тепловой энергии еще более увеличивает рентабельность АБХМ.
    АБХМ имеют также ряд конструктивных преимуществ, не относящихся к области эффективного использования топливно-энергетических ресурсов:

• Экологическая безопасность за счет отказа от использования хладагентов на основе CFC (хлорфторуглерода) и HCFC (гидрохлорфторуглерода).
• Пониженный шум при работе оборудования, отсутствие вибраций.
• Отсутствие высокого давления в системе.
• Отсутствие массивных движущихся частей.
• Высокая надежность установок.
• Низкая стоимость обслуживания.

    В процессе сгорания газа в АБХМ образуется некоторое количество вредных выбросов, однако весьма незначительное, поскольку современные установки обеспечивают достаточно полное сгорание. С другой стороны, эти выбросы образуются непосредственно на месте функционирования установки, и этот фактор в некоторых случаях может являться критическим.
АБХМ прямого нагрева могут использоваться, помимо выработки охлажденной воды, и для получения горячей воды в том случае, если они оборудованы вспомогательным теплообменником и контур горячей воды оборудован необходимыми устройствами управления. Если система используется подобным образом, то, как правило, общие приведенные затраты (включая капитальные затраты, расходы на пусконаладку, эксплуатационные затраты), будут ниже, чем затраты при использовании отдельных холодильной машины и бойлера.
    Относительно высокие капитальные затраты ограничивают широкое распространение АБХМ. Низкая эффективность одноступенчатых АБХМ ограничивает их конкурентоспособность, за исключением случаев использования легкодоступной сбросной тепловой энергии. Даже применение двухступенчатых АБХМ экономически оправдано не во всех ситуациях.
    Еще одно ограничение применения АБХМ связано с относительно высокими затратами энергии на работу насосов. Производительность водяного насоса конденсатора в общем случае является функцией потока холодоносителя.                 Технологии охлаждения, отличающиеся более низким холодильным коэффициентом, обычно требуют более высокого потока холодоносителя по сравнению с технологиями, обеспечивающими более высокий холодильный коэффициент, и, соответственно, большей производительности (размеров) циркуляционного насоса. Точно так же при использовании абсорбционных холодильных машин из-за большего объема холодоносителя требуются градирни большего размера, чем при использовании холодильных машин с электроприводом компрессоров.


Автор: Н.В. Шилкин
Источник: АВОК 1, 2008

ЧИТАЙТЕ ТАКЖЕ